Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 773
Filtrar
1.
BMC Med Genomics ; 17(1): 94, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641846

RESUMEN

BACKGROUND: Copy number variations (CNVs) have emerged as significant contributors to the elusive genetic causality of inherited eye diseases. In this study, we describe a case with optic atrophy and a brain aneurysm, in which a de novo CNV 3q29 deletion was identified. CASE PRESENTATION: A 40-year-old female patient was referred to our department after undergoing aneurysm transcatheter arterial embolization for a brain aneurysm. She had no history of systemic diseases, except for unsatisfactory best-corrected visual acuity (BCVA) since elementary school. Electrophysiological tests confirmed the findings in retinal images, indicating optic nerve atrophy. Chromosomal microarray analysis revealed a de novo deletion spanning 960 kb on chromosome 3q29, encompassing OPA1 and six neighboring genes. Unlike previously reported deletions in this region associated with optic atrophy, neuropsychiatric disorders, and obesity, this patient displayed a unique combination of optic atrophy and a brain aneurysm. However, there is no causal relationship between the brain aneurysm and the CNV. CONCLUSION: In conclusion, the optic atrophy is conclusively attributed to the OPA1 deletion, and the aneurysm could be a coincidental association. The report emphasizes the likelihood of underestimating OPA1 deletions due to sequencing technology limitations. Recognizing these constraints, healthcare professionals must acknowledge these limitations and consistently search for OPA1 variants/deletions in Autosomal Dominant Optic Atrophy (ADOA) patients with negative sequencing results. This strategic approach ensures a more comprehensive exploration of copy-number variations, ultimately enhancing diagnostic precision in the field of genetic disorders.


Asunto(s)
Aneurisma Intracraneal , Atrofia Óptica , Femenino , Humanos , Adulto , Mutación , Variaciones en el Número de Copia de ADN , Aneurisma Intracraneal/genética , Atrofia Óptica/genética , Fenotipo , Cromosomas , Linaje , GTP Fosfohidrolasas/genética
2.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38423010

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Asunto(s)
Epilepsia Generalizada , Atrofia Óptica , Animales , Humanos , Niño , Pez Cebra/genética , Atrofia Óptica/genética , Fenotipo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
3.
Artículo en Chino | MEDLINE | ID: mdl-38297853

RESUMEN

CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.


Asunto(s)
Ataxia Cerebelosa , Deformidades Congénitas del Pie , Pérdida Auditiva Sensorineural , Atrofia Óptica , Reflejo Anormal , Pie Cavo , Humanos , Niño , Femenino , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/diagnóstico , Mutación , Fenotipo , ATPasa Intercambiadora de Sodio-Potasio/genética
4.
Mamm Genome ; 35(1): 1-12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351344

RESUMEN

Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.


Asunto(s)
Atrofia Óptica , Síndrome de Wolfram , Humanos , Ratas , Ratones , Animales , Síndrome de Wolfram/genética , Síndrome de Wolfram/terapia , Síndrome de Wolfram/diagnóstico , Pez Cebra , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Mutación , Proteínas de Unión a Calmodulina/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
5.
Zhonghua Yan Ke Za Zhi ; 60(2): 180-184, 2024 Feb 11.
Artículo en Chino | MEDLINE | ID: mdl-38296324

RESUMEN

Different from classical autosomal recessive Wolfram syndrome, Wolfram-like syndrome is an autosomal dominant disorder caused by a heterozygous mutation in the WFS1 gene. In this case, a 7-year-old male child presented to the eye clinic due to vision loss that could not be corrected, discovered during a routine examination. The child had experienced hearing impairment since early childhood, leading to cochlear implantation. Ophthalmic examination revealed optic disc atrophy in both eyes. Optical coherence tomography imaging demonstrated a distinctive thickening of the outer plexiform layer with abnormal layering, characteristic of a single mutation in the WFS1 gene. Subsequent genetic testing identified a de novo heterozygous missense mutation c.2051C>T (p.A684V) in the WFS1 gene, which ultimately led to the diagnosis of Wolfram-like syndrome.


Asunto(s)
Atrofia Óptica , Síndrome de Wolfram , Niño , Humanos , Masculino , Mutación , Atrofia Óptica/genética , Linaje , Tungsteno , Síndrome de Wolfram/genética , Síndrome de Wolfram/diagnóstico
6.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217609

RESUMEN

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Asunto(s)
Discapacidad Intelectual , Atrofia Óptica , Humanos , Masculino , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , NADPH Deshidrogenasa/metabolismo , Atrofia Óptica/genética , Proteómica
7.
Eur J Med Genet ; 68: 104917, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296034

RESUMEN

MECR-related neurologic disorder, also known as mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) or dystonia with optic atrophy and basal ganglia abnormalities in childhood (MIM: #617282), is an autosomal recessive inherited disease characterized by a progressive childhood-onset movement disorder and optic atrophy. Here we report a 19-year-old male, presented with progressive visual failure, nystagmus, and right orbital pain, with no history of movement or eye disorder in his childhood. His visual decline started at age 18 years, whereas nystagmus emerged seven months later. Analysis of whole-exome sequencing (WES) revealed a homozygous recurrent variant (NM_016011.5:c.772C > T, p.Arg258Trp) in MECR. These findings suggest phenotypic heterogeneity in MECR-related neurologic disorder, thus, more relevant case screening, will help to delineate the genotype-phenotype correlation of the MECR gene.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos del Movimiento , Atrofia Óptica , Adolescente , Humanos , Masculino , Adulto Joven , Trastornos Distónicos/genética , Mutación , Atrofia Óptica/genética
8.
Int J Dev Neurosci ; 84(1): 75-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010976

RESUMEN

INTRODUCTION: NR2F1 pathogenetic variants are associated with the Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Recent studies indicate that BBSOAS patients not only have visual impairments but may also have developmental delays, hypotonia, thin corpus callosum and epileptic seizures. However, reports of BBSOAS occurrence along with infantile epileptic spasm syndrome (IESS) are rare. METHODS: Here, we report three cases involving children with IESS and BBSOAS caused by de novo NR2F1 pathogenetic variants and summarize the genotype, clinical characteristics, diagnosis and treatment of them. RESULTS: All three children experienced epileptic spasms and global developmental delays, with brain Magnetic Resonance Imaging (MRI) suggesting abnormalities (thinning of the corpus callosum or widened extracerebral spaces) and two of the children exhibiting abnormal visual evoked potentials. CONCLUSIONS: Our findings indicate that new missense NR2F1 pathogenetic variants may lead to IESS with abnormal visual evoked potentials. Thus, clinicians should be aware of the Bosch-Boonstra-Schaaf optic atrophy syndrome and regular monitoring of the fundus, and the optic nerve is necessary during follow-up.


Asunto(s)
Potenciales Evocados Visuales , Atrofia Óptica , Niño , Humanos , Factor de Transcripción COUP I/genética , Mutación Missense , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/genética , Fenotipo , Espasmo , Síndrome
9.
Am J Med Genet A ; 194(2): 226-232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798908

RESUMEN

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) and PEHO-like syndromes are very rare infantile disorders characterized by profound intellectual disability, hypotonia, convulsions, optic, and progressive brain atrophy. Many causative genes for PEHO and PEHO-like syndromes have been identified including CCDC88A. So far, only five patients from two unrelated families with biallelic CCDC88A variants have been reported in the literature. Herein, we describe a new family from Egypt with a lethal epileptic encephalopathy. Our patient was the youngest child born to a highly consanguineous couple and had a family history of five deceased sibs with the same condition. She presented with postnatal microcephaly, poor visual responsiveness, and epilepsy. Her brain MRI showed abnormal cortical gyration with failure of opercularization of the insula, hypogenesis of corpus callosum, colpocephaly, reduced white matter, hypoplastic vermis, and brain stem. Whole exome sequencing identified a new homozygous frameshift variant in CCDC88A gene (c.1795_1798delACAA, p.Thr599ValfsTer4). Our study presents the third reported family with this extremely rare disorder. We also reviewed all described cases to better refine the phenotypic spectrum associated with biallelic loss of function variants in the CCDC88A gene.


Asunto(s)
Edema Encefálico , Enfermedades Neurodegenerativas , Atrofia Óptica , Espasmos Infantiles , Humanos , Niño , Femenino , Espasmos Infantiles/genética , Edema Encefálico/genética , Atrofia Óptica/genética , Síndrome , Proteínas de Microfilamentos/genética , Proteínas de Transporte Vesicular/genética
10.
Orphanet J Rare Dis ; 18(1): 359, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974252

RESUMEN

BACKGROUND: Wolfram syndrome (WS) is a rare autosomal recessive multisystem neurodegenerative disease characterized by non-autoimmune insulin-dependent diabetes mellitus, optic atrophy, sensorineural deafness, and diabetes as the main features. Owing to clinical phenotypic heterogeneity, the misdiagnosis rate is high. However, early accurate diagnosis and comprehensive management are key to improving quality of life and prolonging life. RESULTS: Eleven patients from seven WS pedigrees with 10 mutation sites (c.1314_1317delCTTT, c.C529T, c.C529A, c.G2105A, c.C1885T, c.1859_1860del, c.G2020A, c.C529A, c.G2105A, and c.G1393C) in the WFS1 gene were included. We conducted further expert department analysis to clarify the diagnosis and analyze the correlation between genes and phenotypes. CONCLUSIONS: The genotypes of these patients were closely associated with their phenotypes. The clinical data of the patients were analyzed to provide a basis for the diagnosis and clinical management of the disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Atrofia Óptica , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/genética , Calidad de Vida , Mutación/genética , Atrofia Óptica/genética
11.
Invest Ophthalmol Vis Sci ; 64(13): 17, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37819743

RESUMEN

Purpose: To describe clinical and molecular findings of two families with X-linked optic atrophy and present two new pathogenic variants in the WDR45 gene. Methods: Case series and molecular analysis of two families of Jewish Ashkenazi descent with early onset bilateral optic atrophy. Whole-exome sequencing (WES) and bioinformatic analysis were performed, followed by Sanger sequencing and segregation analysis. Results: In both families, male siblings (three in family 1, two in family 2) had early-onset isolated bilateral optic atrophy. The sibling's healthy mother (and in the second family also one healthy sister) had a mild presentation, suggesting a carrier state and an X-linked inheritance pattern. All participants were otherwise healthy, apart from mild learning disabilities and autism spectrum disorder in two siblings of the second family. Variants in known optic atrophy genes were excluded. Analysis revealed a point variant in the WDR45 gene-a missense variant in the first family, NM_001029896.2:c.107C>A; NP_001025067.1:p.Pro36His (variant ID: 1704205), and a splice site variant in the second family, NM_001029896.2:c.236-1G>T; NP_009006.2:p.Val80Leu (variant ID: 1704204), located on Xp11.23 (OPA2 locus). Both variants are novel and predicted as pathogenic. In both families, the variant was seen with full segregation with the disease, occurring in all affected male participants and in one allele of the carrier females, as well as none of the healthy participants. Conclusions: Among two families with isolated X-linked optic atrophy, molecular analysis revealed novel variants in the WDR45 gene in full segregation with the disease. This gene resides within the OPA2 locus, previously described to associate with X-linked optic atrophy. Taken together, these findings suggest that certain pathogenic variants in the WDR45 gene are associated with isolated X-linked optic atrophy.


Asunto(s)
Trastorno del Espectro Autista , Enfermedades Genéticas Ligadas al Cromosoma X , Atrofia Óptica , Femenino , Humanos , Masculino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Atrofia Óptica/genética , Atrofia Óptica/patología , Mutación Missense , Linaje , Mutación , Proteínas Portadoras/genética
12.
Biomolecules ; 13(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37759745

RESUMEN

Wolfram Syndrome (WFS) is a rare, autosomal, recessive neurogenetic disorder that affects many organ systems. It is characterised by diabetes insipidus, diabetes mellites, optic atrophy, and deafness and, therefore, is also known as DIDMOAD. Nearly 15,000-30,000 people are affected by WFS worldwide, and, on average, patients suffering from WFS die at 30 years of age, usually from central respiratory failure caused by massive brain atrophy. The more prevalent of the two kinds of WFS is WFS1, which is a monogenic disease and caused by the loss of the WFS1 gene, whereas WFS2, which is more uncommon, is caused by mutations in the CISD2 gene. Currently, there is no treatment for WFS1 to increase the life expectancy of patients, and the treatments available do not significantly improve their quality of life. Understanding the genetics and the molecular mechanisms of WFS1 is essential to finding a cure. The inability of conventional medications to treat WFS1 points to the need for innovative strategies that must address the fundamental cause: the deletion of the WFS1 gene that leads to the profound ER stress and disturbances in proteostasis. An important approach here is to understand the mechanism of the cell degeneration after the deletion of the WFS1 gene and to describe the differences in these mechanisms for the different tissues. The studies so far have indicated that remarkable clinical heterogeneity is caused by the variable vulnerability caused by WFS1 mutations, and these differences cannot be attributed solely to the positions of mutations in the WFS1 gene. The present review gives a broader overview of the results from genomic studies on the WFS1 mouse model.


Asunto(s)
Atrofia Óptica , Síndrome de Wolfram , Animales , Ratones , Humanos , Síndrome de Wolfram/genética , Calidad de Vida , Atrofia Óptica/genética , Mutación , Genómica
13.
J Med Case Rep ; 17(1): 409, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752530

RESUMEN

BACKGROUND: Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder that affects 1/200,000 to 1/1,000,000 children. It is characterized by juvenile onset diabetes, optic nerve atrophy and other systemic manifestations. Symptoms of the disease arise mostly in early childhood with a high mortality rate due to severe neurological complications. Two causative genes have been identifed in this syndrome; the classical form is caused by autosomal recessive mutations of the WFS1 gene, and a smaller portion of patients has mutations in the CIDS2 gene, which are responsible for autosomal recessive Wolfram syndrome 2. CASE PRESENTATION: We report the case of a 28-year-old Moroccan boy born from consanguineous parents referred to the department of medical genetics at the National Institute of Health in Rabat. The diagnosis of Wolfram syndrome was made based on insulin-dependent diabetes, optic nerve atrophy, sensorineural deafness, urological abnormalities and psychiatric illness. To establish the diagnosis at a molecular level, we performed next-generation sequencing in the index patient, which revealed compound heterozygous WFS1 mutations: c.1113G > A (p.Trp371Ter) and c.1223_1224insGGAACCACCTGGAGCCCTATGCCCATTT (p.Phe408fs). This second variant has never been described in patients with Wolfram syndrome. CONCLUSION: The identification of the genetic substrate in our patient confirmed the clinical diagnosis of Wolfram syndrome and allowed us to provide him an appropriate management and genetic counseling to his family.


Asunto(s)
Diabetes Mellitus Tipo 1 , Atrofia Óptica , Síndrome de Wolfram , Preescolar , Masculino , Niño , Humanos , Adulto , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Mutación , Atrofia
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1301-1305, 2023 Oct 10.
Artículo en Chino | MEDLINE | ID: mdl-37730236

RESUMEN

OBJECTIVE: To explore the genetic basis for a child with optic atrophy and global developmental delay. METHODS: A child who had presented at the Guangzhou Women and Children's Medical Center in January 2022 was selected as the study subject. Clinical data were collected. Whole exome sequencing (WES) was carried out for the child. Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a nine-month-old female, had manifested dysopia and global developmental delay. Genetic testing revealed that she has harbored a de novo c.425G>C (p.Arg142Pro) variant of the NR2F1 gene, which has been associated with Bosch-Boonstra-Schaaf syndrome. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PS2+PM1+PM2_Supporting+PM5+PP3+PP4). CONCLUSION: The c.425G>C (p.Arg142Pro) variant of the NR2F1 gene probably underlay the pathogenesis in this child. Above finding has enriched the genotypic and phenotypic spectrum of the NR2F1 gene.


Asunto(s)
Atrofia Óptica , Femenino , Humanos , Lactante , Biología Computacional , Factor de Transcripción COUP I/genética , Pruebas Genéticas , Genómica , Genotipo , Atrofia Óptica/genética
15.
J Neurol ; 270(10): 5057-5063, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37418012

RESUMEN

Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of α- and ß-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurodegenerative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis.


Asunto(s)
Discapacidad Intelectual , Atrofia Óptica , Paraplejía Espástica Hereditaria , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Atrofia Óptica/genética , Espasticidad Muscular/genética , Espasticidad Muscular/patología , Discapacidad Intelectual/genética , Mutación/genética , Fenotipo , Paraplejía Espástica Hereditaria/genética
16.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260288

RESUMEN

The nuclear receptor NR2F1 acts as a strong transcriptional regulator in embryonic and postnatal neural cells. In humans, mutations in the NR2F1 gene cause Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS), a rare neurodevelopmental disorder characterized by multiple clinical features including vision impairment, intellectual disability and autistic traits. In this study, we identified, by genome-wide and in silico analyses, a set of nuclear-encoded mitochondrial genes as potential genomic targets under direct NR2F1 transcriptional control in neurons. By combining mouse genetic, neuroanatomical and imaging approaches, we demonstrated that conditional NR2F1 loss of function within the adult mouse hippocampal neurogenic niche results in a reduced mitochondrial mass associated with mitochondrial fragmentation and downregulation of key mitochondrial proteins in newborn neurons, the genesis, survival and functional integration of which are impaired. Importantly, we also found dysregulation of several nuclear-encoded mitochondrial genes and downregulation of key mitochondrial proteins in the brain of Nr2f1-heterozygous mice, a validated BBSOAS model. Our data point to an active role for NR2F1 in the mitochondrial gene expression regulatory network in neurons and support the involvement of mitochondrial dysfunction in BBSOAS pathogenesis.


Asunto(s)
Factor de Transcripción COUP I , Anomalías del Ojo , Discapacidad Intelectual , Atrofia Óptica , Animales , Humanos , Ratones , Encéfalo/metabolismo , Factor de Transcripción COUP I/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Discapacidad Intelectual/genética , Mitocondrias , Mutación/genética , Atrofia Óptica/genética , Atrofia Óptica/metabolismo
17.
Int J Dev Neurosci ; 83(4): 368-373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37186309

RESUMEN

BACKGROUND: Warburg Micro (WARBM) syndrome is a rare heterogeneous recessive genetic disorder characterized by ocular, neurological, and endocrine problems. To date, disease-causing variants in four genes have been identified to cause this syndrome; of these, RAB3GAP1 variants are the most frequent. Very little is known about WARBM syndrome in rural populations. OBJECTIVES: This study aims to investigate the genetics underpinnings of WARBM syndrome in a Pashtun family with two patients from Pakistan. The patients presented with spastic diplegia, severe intellectual disability, microphthalmia, microcornea, congenital cataracts, optic atrophy, and hypogonadism. METHODS: Magnetic resonance imaging (MRI) analysis revealed pronounced cerebral atrophy including corpus callosum hypoplasia and polymicrogyria. Exome sequencing and subsequent filtering identified a novel homozygous missense variant NM_001172435: c.2891A>G, p.Gln964Arg in the RAB3GAP1 gene. The variant was validated, and its segregation confirmed, by Sanger sequencing. RESULTS: Multiple prediction tools assess this variant to be damaging, and structural analysis of the protein shows that the mutant amino acid residue affects polar contact with the neighboring atoms. It is extremely rare and is absent in all the public databases. Taken together, these observations suggest that this variant underlies Micro syndrome in our family and is extremely important for management and family planning. CONCLUSIONS: Identification of this extremely rare variant extends the mutations spectrum of Micro syndrome. Screening more families, especially in underrepresented populations, will help unveil the mutation spectrum underlying this syndrome.


Asunto(s)
Catarata , Hipogonadismo , Discapacidad Intelectual , Atrofia Óptica , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Pakistán , Secuenciación del Exoma , Proteínas de Unión al GTP rab3/genética , Proteínas de Unión al GTP rab3/metabolismo , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/genética , Hipogonadismo/diagnóstico por imagen , Hipogonadismo/genética , Catarata/diagnóstico por imagen , Catarata/genética , Mutación/genética
18.
Zhonghua Yan Ke Za Zhi ; 59(5): 408-410, 2023 May 11.
Artículo en Chino | MEDLINE | ID: mdl-37151011

RESUMEN

A 27-year-old male patient had progressive vision loss in both eyes, which was mainly manifested by impaired ganglion cells in the macular area, accompanied by systemic muscle atrophy in limbs. A complete mitochondrial exon gene detection was performed. The final diagnosis was bilateral optic atrophy and axonal Charcot-Marie-Tooth disease 2A2A caused by mutations of the MFN2 gene. There has been no effective treatment. Applications of nutrients to restore the mitochondrial function may alleviate the clinical symptoms.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Atrofia Óptica , Masculino , Humanos , Adulto , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas Mitocondriales/genética , Mutación , Atrofia Óptica/genética , Ojo , GTP Fosfohidrolasas/genética
19.
Eur J Med Genet ; 66(4): 104729, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36775012

RESUMEN

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS, OMIM 615722) is a rare autosomal dominant disorder characterized by intellectual disability, optic atrophy, cortical visual impairment, mild facial dysmorphism, hypotonia, hearing problems, attention deficit and a thin corpus callosum. The gene underlying this disorder is NR2F1 located on chromosome 5q15 which encodes for a nuclear receptor protein. Mutations and deletions have been identified in patients. Here we report on a brother and a sister carrying a pathogenic nonsense NR2F1 variant. The patients have a mild phenotype showing optic atrophy, mild intellectual disability, dysmorphic features and thin corpus callosum. This correlates with previously described milder phenotypes in patients with mutations in this domain. The variant was not identified in the parental genome indicating most likely a gonadal mosaicism. Gonadal mosaicism has not yet been reported in Bosch-Boonstra-Schaaf Optic Atrophy Syndrome.


Asunto(s)
Discapacidad Intelectual , Atrofias Ópticas Hereditarias , Atrofia Óptica , Masculino , Humanos , Hermanos , Discapacidad Intelectual/genética , Mosaicismo , Atrofias Ópticas Hereditarias/genética , Atrofia Óptica/genética
20.
Clin Genet ; 103(6): 625-635, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843433

RESUMEN

Since the first report of SOPH syndrome among the Yakut population in 2010, new clinical data of SOPH-like conditions continue to appear. We expand the phenotypic spectrum of SOPH syndrome and perform a comparative analysis of Yakut SOPH patients' clinical data with SOPH-like conditions reported in the world scientific literature to form a foundation for NBAS pathogenesis discussion. Clinical data from the genetic records of 93 patients with SOPH syndrome and global survey data on patients with pathogenic variants of the C-terminal in the NBAS gene were collected. A detailed phenotype description of patients is presented with a total number of 111 individuals. Underweight below the fifth centile and prone to delayed bone age in Yakut SOPH patients are retrospectively observed. We outline the short stature with optic atrophy as the leading phenotyping trait for C-terminal NBAS patients. The pathophysiology and patients management of SOPH-like conditions are discussed.


Asunto(s)
Enanismo , Atrofia Óptica , Humanos , Estudios Retrospectivos , Proteínas de Neoplasias/genética , Fenotipo , Atrofia Óptica/genética , Enanismo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA